Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995687

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión Génica
2.
Neuron ; 110(18): 2929-2948.e8, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35882228

RESUMEN

Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the molecular signatures that distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We developed methods for the high-throughput isolation and transcriptome profiling of single somas with NFTs from the human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing neurons shared a marked upregulation of synaptic transmission-related genes, including a core set of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-independent mechanisms of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Ovillos Neurofibrilares , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , Ovillos Neurofibrilares/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Hum Mol Genet ; 30(3-4): 247-264, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33760043

RESUMEN

Beta (ß)-synuclein (ß-Syn) has long been considered to be an attenuator for the neuropathological effects caused by the Parkinson's disease-related alpha (α)-synuclein (α-Syn) protein. However, recent studies demonstrated that overabundant ß-Syn can form aggregates and induce neurodegeneration in central nervous system (CNS) neurons in vitro and in vivo, albeit at a slower pace as compared with α-Syn. Here, we demonstrate that ß-Syn mutants V70M, detected in a sporadic case of dementia with Lewy bodies (DLB), and P123H, detected in a familial case of DLB, robustly aggravate the neurotoxic potential of ß-Syn. Intriguingly, the two mutations trigger mutually exclusive pathways. ß-Syn V70M enhances morphological mitochondrial deterioration and degeneration of dopaminergic and non-dopaminergic neurons, but it has no influence on neuronal network activity. Conversely, ß-Syn P123H silences neuronal network activity, but it does not aggravate neurodegeneration. ß-Syn wild type (WT), V70M and P123H formed proteinase K-resistant intracellular fibrils within neurons, albeit with less stable C-termini as compared with α-Syn. Under cell-free conditions, ß-Syn V70M demonstrated a much slower pace of fibril formation as compared with WT ß-Syn, and P123H fibrils present with a unique phenotype characterized by large numbers of short, truncated fibrils. Thus, it is possible that V70M and P123H cause structural alterations in ß-Syn, which are linked to their distinct neuropathological profiles. The extent of the lesions caused by these neuropathological profiles is almost identical to that of overabundant α-Syn and is thus likely to be directly involved into the etiology of DLB. Overall, this study provides insights into distinct disease mechanisms caused by mutations of ß-Syn.


Asunto(s)
Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/patología , Mitocondrias/patología , Mutación Missense , Neuronas/metabolismo , Sinucleína beta/genética , Anciano , Animales , Línea Celular , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Masculino , Persona de Mediana Edad , Neuronas/patología , Ratas , Ratas Wistar , Sustancia Negra/metabolismo , Sustancia Negra/patología
4.
J Neurochem ; 156(5): 674-691, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32730640

RESUMEN

A contribution of α-Synuclein (α-Syn) to etiology of Parkinson´s disease (PD) and Dementia with Lewy bodies (DLB) is currently undisputed, while the impact of the closely related ß-Synuclein (ß-Syn) on these disorders remains enigmatic. ß-Syn has long been considered to be an attenuator of the neurotoxic effects of α-Syn, but in a rodent model of PD ß-Syn induced robust neurodegeneration in dopaminergic neurons of the substantia nigra. Given that dopaminergic nigral neurons are selectively vulnerable to neurodegeneration in PD, we now investigated if dopamine can promote the neurodegenerative potential of ß-Syn. We show that in cultured rodent and human neurons a dopaminergic neurotransmitter phenotype substantially enhanced ß-Syn-induced neurodegeneration, irrespective if dopamine is synthesized within neurons or up-taken from extracellular space. Nuclear magnetic resonance interaction and thioflavin-T incorporation studies demonstrated that dopamine and its oxidized metabolites 3,4-dihydroxyphenylacetaldehyde (DOPAL) and dopaminochrome (DCH) directly interact with ß-Syn, thereby enabling structural and functional modifications. Interaction of DCH with ß-Syn inhibits its aggregation, which might result in increased levels of neurotoxic oligomeric ß-Syn. Since protection of outer mitochondrial membrane integrity prevented the additive neurodegenerative effect of dopamine and ß-Syn, such oligomers might act at a mitochondrial level similar to what is suggested for α-Syn. In conclusion, our results suggest that ß-Syn can play a significant pathophysiological role in etiology of PD through its interaction with dopamine metabolites and thus should be re-considered as a disease-relevant factor, at least for those symptoms of PD that depend on degeneration of nigral dopaminergic neurons.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sinucleína beta/metabolismo , Sinucleína beta/toxicidad , Animales , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Persona de Mediana Edad , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/patología , Embarazo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...